The publication info can also be found on:
Journal Articles:
65. "Strain-tunable Berry curvature in quasi-two-dimensional chromium telluride",
Hang Chi*, Y. Ou*, T. B. Eldred, W. Gao, S. Kwon, J. Murray, M. Dreyer, R. E. Butera, A. C. Foucher, H. Ambaye, J. Keum, A. T. Greenberg, Y. Liu, M. R. Neupane, G. J. d. Coster, O. A. Vail, P. J. Taylor, P. A. Folkes, C. Rong, G. Yin, R. K. Lake, F. M. Ross, V. Lauter, D. Heiman, and J. S. Moodera*,
arXiv:2207.02318 (2022).
DOI | PDF
Highlight: Magnetic transition metal chalcogenides form an emerging platform for exploring spin-orbit driven Berry phase phenomena owing to the nontrivial interplay between topology and magnetism. Here we show that the anomalous Hall effect in pristine Cr2Te3 thin films manifests a unique temperature-dependent sign reversal at nonzero magnetization, resulting from the momentum-space Berry curvature as established by first-principles simulations. The sign change is strain tunable, enabled by the sharp and well-defined substrate/film interface in the quasi-two-dimensional Cr2Te3 epitaxial films, revealed by scanning transmission electron microscopy and depth-sensitive polarized neutron reflectometry. This Berry phase effect further introduces hump-shaped Hall peaks in pristine Cr2Te3 near the coercive field during the magnetization switching process, owing to the presence of strain-modulated magnetic domains. The versatile interface tunability of Berry curvature in Cr2Te3 thin films offers new opportunities for topological electronics.
64. "Ubiquitous Superconducting Diode Effect in Superconductor Thin Films",
Y. Hou, F. Nichele, Hang Chi, A. Lodesani, Y. Wu, M. F. Ritter, D. Z. Haxell, M. Davydova, S. Ilić, F. S. Bergeret, A. Kamra, L. Fu, P. A. Lee, and J. S. Moodera,
arXiv:2205.09276 (2022).
DOI | PDF
63. "Sensing the Local Magnetic Environment through Optically Active Defects in a Layered Magnetic Semiconductor",
J. Klein, Z. Song, B. Pingault, F. Dirnberger, Hang Chi, J. B. Curtis, R. Dana, R. Bushati, J. Quan, L. Dekanovsky, Z. Sofer, A. Alù, V. M. Menon, J. S. Moodera, M. Lončar, P. Narang, and F. M. Ross,
ACS Nano 17, 288-299 (2023).
DOI | PDF
62. "Progress and prospects in the quantum anomalous Hall effect",
Hang Chi* and J. S. Moodera*,
APL Materials 10, 090903 (2022). Invited for Special Topic - Materials Challenges and Synthesis Science of Emerging Quantum Materials.
DOI | PDF
Highlight: The quantum anomalous Hall effect refers to the quantization of Hall effect in the absence of applied magnetic field. The quantum anomalous Hall effect is of topological nature and well suited for field-free resistance metrology and low-power information processing utilizing dissipationless chiral edge transport. Summarized here are some of the recent achievements as well as the materials challenges and opportunities, pertaining to engineering intrinsic/interfacial magnetic coupling, that are expected to propel future development of the field.
Selected for AIP Publishing Showcase: https://link.growkudos.com/1bg131rdyps
61. "A Van der Waals Interface Hosting Two Groups of Magnetic Skyrmions",
Y. Wu, B. Francisco, Z. Chen, W. Wang, Y. Zhang, C. Wan, X. Han, Hang Chi, Y. Hou, A. Lodesani, G. Yin, K. Liu, Y.-T. Cui, K. L. Wang, and J. S. Moodera,
Advanced Materials 34, 2110583 (2022).
DOI | PDF